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Summary

Implicit and explicit spatial differencing techniques with fourth order accuracy have been

developed. The implicit technique is based on the Pade compact scheme. A Dispersion

Relation Preserving concept has been incorporated into both of the numerical schemes.

Two dimensional Euler computation of a spatially-developing free shear flow, with and

without external excitation, has been performed to demonstrate the capability of numer-

ical schemes developed. Results are in good agreement with theory and experimental

observation regarding the growth rate of fluctuating velocity, the convective velocity, and

the vortex-pairing process.

Introduction

Jet noise has emerged as a major issue in the High Speed Civil Transport Program. Noise

reduction to an acceptable level set by FAR 36 Stage III is a challenging task to achieve.

In order to accomplish this task, it has become increasingly important to be able to predict

the sound pressure as a measure of noise level in the aeroacoustic research area. Far field

noise is generated as a byproduct of the jet flow behind the exhaust nozzle. Therefore,

understanding of this sound source is crucial. Lighthill [1], through his pioneering acous-

tic analogy, identified the sound source to be a fluctuating Reynolds stress. Numerous

other works, both experimental and analytical, have been focused on the flow turbulence
associated with the sound at a distance.

Experimental observations show that the sound power emitted from the jet column is

greatest within 4 or 5 diameters downstream, and then decays rapidly through a transition

region. This indicates that the initial development of the jet, before it becomes fully

turbulent, should be clearly understood so that an accurate noise prediction can be made.

The fully turbulent flow assumption yields analytic results which are far from reality in the

developing regions. Freymuth [2] observed organized large eddy structures in a separated

flow of a jet. Brown and Roshko [3] also found large vortical structure in a free shear layer.

The identity of this large vortical structure is discernable even in the fully turbulent region

far downstream. Winant and Browand [4] reported that a mechanism of the mixing layer

growth is an interaction of adjacent large vortices. These investigators have shown that

the flow in free shear layers such as jet and plane mixing flow is well hehaved and more

organized than previously thought. Shear flow is dominated by large vortical structures,

which are very predictable and controllable. These flows, which have been thought to

be fully turbulent and therefore random and chaotic, have become research subjects with



a quite different perspective since the observation of these organized structures. The

separation of the organized flow entities from the fully random quantities make it possible

to study turbulent shear flows in a certain deterministic way.

A turbulent flow field is made up of a range of length scales from the Kolmogorov scale

to the integral scale. If numerical mesh size can be made fine enough to resolve the

smallest scales which dissipate the kinetic energy, then direct numerical simulation (DNS)

is the tool to obtain the entire turbulent flow structure. However, the dissipative scale

becomes finer as the Reynolds number is increased and the practical hardware limitation

is rapidly reached. Therefore, the DNS method is limited to simulating only low Reynolds

number turbulence. For practical computation of higher Reynolds number flows, small

scale fluctuations can be modeled so that desired large scale eddies can be computed

directly, while proper dissipation is provided by the small scale eddy model. This approach,

which is referred to as large eddy simulation (LES), has been successfully employed in many

flows with practical applications.

In order to obtain the flow field as the source of sound using DNS or LES the simula-

tions must be performed using numerical techniques with least distortion and diffusive

characteristics. The source of numerical diffusion and phase error is known to be mainly

from the numerical formulation of convective terms. This numerical artifact gets worse

for high Reynolds number flow simulations. Typically, free shear flows of interest have

very high Reynolds numbers. Therefore, a higher order accurate numerical scheme which

meets the previously mentioned requirements is needed. To develop a highly accurate nu-

merical scheme for this purpose, it will be appropriate to consider only an inviscid flow.

Fourth order explicit and implicit differencing schemes with a Dispersion Relation Pre-

serving property are introduced in the context of the numerical formulation of the Euler

equations. A Pade compact scheme is used in the implicit differencing formulation. A

plane shear flow generated by two streams of air with different velocities is chosen as an

example to validate numerical schemes. Subsonic and supersonic results will be shown

and discussed here together with physical observations of the spatial growth of fluctuating

velocity, the development of large vortical structure, and the vortex-pairing process.

Governing Equation

The variables T, p, x, u, t,p, and e represent dimensionless quantities of temperature, den-

sity, position, velocity, time, pressure, and total energy per mass. The nondimensionaliza-

* * * * Additional definitions aretion is based on reference quantities of T*, p*, Ir,Ur,Pr , and er.
, _ . , .2 , ,2

t* = Ir/ur, p_ = p_u_ , and er = u_ . Then, the non-dimensional equation of state can be
written as follows :

pT
p- 7M 2 with T--V(7-1)M_(e- u2 + v_2 )

where V is the ratio of specific heats, Mr = u*/_, and R* is the gas constant. The

Euler equations in two-dimensional Cartesian coordinates (x, y) are :

0q Of 0g

+ + = s where q = (p,pu,pv,p )r (1)
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s is the source term. The dimensionless speed of sound, c, becomes x/T/M,.. Equation (1)

can be written in a generalized coordinates (_, 77) as :

OQ OF OG

0t +_-+_-_-=S where Q=Jq, S=Js (2)

J = xe_ - _ex. = (_ - _)-1 F = J(_f + %g), G = J(_f + _,g)

Formulation of Difference Scheme

Basically, two different formulations axe presented for a spatial differencing, one is the

explicit and the other is implicit differencing technique. A Pade compact differencing

formulation is used for the implicit method developed. Pade compact scheme [5,6] has

also been previously used in flow computations. All of the methods presented axe fourth

order accurate in space and incorporated with the Dispersion Relation Preserving concept

proposed by Tam and Webb [7].

Ezplicit Differencing

The fourth order finite-difference formulation of °o-_, which is denoted by f', is given by :

4 ( fi+l _hfi-1 l ( fi+2_hfi-2St(x) = _ - )-_ - )

where the subscript i is the mesh index, h the uniform mesh size. The above expression

is solely based on the trunction of Taylor series. In unsteady flow computation, the order

of accuracy is not the only issue to obtain a reliable solution. Unsteady flows by nature

contain wave trains, which must be well resolved. Numerical difference formulations, con-

structed solely by truncation of Taylor series, do not guarantee wave preservation even

when higher order differences axe used. The wave becomes severely distorted as the wave

number, or the frequency in a time space, is increased and eventually a physical inter-

pretation of the results becomes impossible. Tam and Webb [7] proposed a difference

scheme, which is called the Dispersion Relation Preserving (hereinafter it will be called

DRP) scheme, in which the dispersion characteristics follows closely to that of original

differential form. For example, suppose we need a fourth order explicit difference scheme

using six neighboring points, then the finite difference formulation of f'(x) becomes :

fi+l -- fi--1 fi+2 -- fi--2 fi+3 -- fi--3

f'(x)=a 2h +b 4h +c 6h (3)
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9--8a and 3_-4 For c = 0 theTo be fourth order accurate, the constants b and c are ---g-- 5

above expression uses four adjacent points, which is solely based on the truncation of

Taylor series. Equation (3) contains one free parameter, say a, which will be optimized.

To introduce the DRP scheme, we define the Fourier transform of f(x) and its inverse as :

1

](w)_

:/+2/(x)_

Fourier transforming equation (3) by the above definition gives :

b c

i_¢](w) = i(a sin x + _ sin 2_ + _ sin 3x)](w)

where _ is defined to be wh. Notice that with the difference approximation given by (3),

an input wave number of x is distorted into a different wave number of k which is defined

b sin 2t¢ + c sin 3x. It is needed to optimize the free parameter a so thatto be asinx+ _

the responding wave k depicts the input wave x closely over the wave number space of

interest. In reference [7] the function to be minimized is chosen as :

= [_/2I (_ _ k)2 dx
J-_/2

(4)

and ,r is selected under an assumption that a minimum of fourThe limits of integral -_
mesh intervals are required to resolve a wave. This appears quite plausible because the

value of I becomes very small over a wide range of a for longer waves, say 8h, 16h waves.

For these longer waves optimization based on DRP concept becomes less meaningful.

Figure 1 shows the numerical behavior of k against _ for different values of a. The straight

line represents the exact differentiation. It is seen that the curve for a = 1.59853, which

has been evaluated to be optimum value by reference [7], closely follows the straight line

for _ up to about 0.5, while the sixth order counterpart is valid up to about _ of 0.4. A

conventional fourth order differencing, which is obtained at a = _, restricts its validity

only to a long wave range, say x < 0.3. There is no doubt that the second order accurate

scheme is severely limited to resolving only long waves.

Pade Compact Differencing Scheme

The Pade compact difference scheme used here is an implicit method in space. This scheme

uses a symmetric numerical stencil in a compact form so that only a tridiagonal or penta-

diagonal matrix inversion is needed. Even for higher order formulations the compactness

is still maintained. Following general form of the Pade difference scheme can be used to

obtain a difference form of f'.

fi+2 -- fi-2 fi+l -- fi-1

•..+ o_2f_-2+ celf__l+ f_+ oqf_+l + o_2f_+2+..-=--. + a2 + al4h 2h
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In the present formulation we use the following form to assure that only the tridiagonal

matrix inversion is required to obtain a solution for if(x).

, , , fi÷ -fi-2
aft_ 1 + f_ + afi+l = b 4h

"b a fi+l - fi-1
2h (5)

With a = 2a+4 and b = 4a-1 this formulation is forth order accurate, and a ia a free3 3

1 It isparameter. Equation (5) can be reduced to sixth order accuracy if a is set to g.

straightforward to make the Pade formulation (5) DRP based since it has a built-in free

parameter a to be optimized. Using the same definition of Fourier transform as used in

the explicit differencing case, we can formulate the wave number relation as •

asinn + _sin2_¢

1 + 2a cos t¢

The optimum value of a is computed to be 0.35619 when the integral I, defined in (4), is

minimized. Figure 2 illustrates the wave number relation between _ the input wave and

k the response wave. As was the case with the explicit difference scheme, better wave

behavior is observed for the fourth order scheme with the optimum a than for the sixth
1

order differencing with a = _. The curve for a = _ is of the most compact fourth order

scheme. Figure 3 is the comparison made among the six cases. The most compact fourth

order scheme has broader range of wave number than the optimum case of the explicit

scheme. However, for a computation which employs a large number of mesh points such

as in a three dimensional flow simulation, the optimized explicit scheme can be a good

alternative to the implicit differencing if only a moderate number of mesh points are

added more for the resolution of all waves under consideration.

Comments on Finite Volume Scheme

Finite volume formulations have been favorably used in the CFD community because it

mimics an integral form of physical equation on a computation cell. The surface values,

known as fluxes, are of primary concern. The finite volume formulation of the flow equation

is conservative since the fluxes are cancelled out when a global summation is carried out

over all the computation cells. For example, the one dimensional equation, 0u OF

can be integrated over a space interval of h to give :

u dz + F +½- Fi_½= 0
2

1 and i + 1 denotewhere F is a function of u, h uniform mesh size, and the subscripts i - 7

the left and right cell boundaries. A second order spatial accuracy can be achieved by

2 I(Fi+I Fi)representing the integral, f u dx, by uih and the fluxes Fi+ ½ and Fi_! to be +

and ½(Fi-1 + Fi). This leads to the symmetric finite difference formulation of"

OU OF Oui Fi+l -- Fi-1

0---_+ Ox - Ot + 2h + O(h2)
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For higher order spatial accuracy, the finite volume formulation is proposed as the following

j+ o, +.o"_ ( +-_x )dx=h _ ak"_(ui+k)+Fi+½-Fi-½
-_ k=-N

Expanding Fi_ ½ and Fi+ ½ about the point xi in the Taylor series and then using F m =

-Ou°/Ot, F 'm_ = -Oum_/Ot (prime denotes a derivative with respect to the spatial variable

x) relationships, we can obtain the following for fourth order accuracy.

Ou OF 0 1 22 1 Fi+½ - Fi-½ + O(h 4) (6)-_ + ox - _(-_ui-1 + -_ui + -_u_+l) + h

The quantity in the parenthesis of the time term is a cell average value of u and the fluxes

are evaluated in a symmetric manner as:

9 (Fi+I + Fi)- (Fi+2 + Fi-1) 9(Fi-1 + Fi)- (Fi-2 + Fi+l)
Fi+½ = 16 and Fi_ ½ = 16

Equation (6) is a time implicit form which calls for a matrix inversion. A multi-dimensional

extension of the finite volume formulation becomes increasingly complicated.

As a coding practice in the present work, a finite volume like formulation is used for the

spatial discretization through a definition as :

s' - ]i-½
= h (7)

The value fi can be treated as a cell interface value only by analogy, but it is not the

physical value at the designed accuracy. (up to the second order accuracy, fi represents a

physical quantity at the interface) For the explicit differencing, we propose the following •

fii-½ = A1 fi +2fi-1 + A2 fi+l +2 fi-2 + As fi+2 +2 fi-3

Using the definition (7) for equation (3), we arrive at the following constants :

b c b c c

For the Pade compact scheme, we also propose the following formulation, which is similar
1

to equation (5), to obtain an interface value at the point i - _.

04,_:+ L-½ = B,
fi -_- fi--1 fi+l "_- fi--2

+ B2 (8)
2 2

Rewriting a similar equation centered at i + ½ and then subtracting the original equation

(8) from it gives :

- +L+½- L-½+ - ) = B2
fi+2 - fi-2

2 + (B1 - B2) 2
fi+l -- fi-i
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By using the definition of equation (7), the aboveequation reducesto

+ + =
fi+ - fi-2 fi+ - fi-1

+ (B1 - B2)4h 2h
(9)

By inspecting equation (9) against equation (5), the constants are found to be B1 = 6

and By ,_-1 For (_ = 1 only two neighboring two points are used, which has the most--- 6 " i

compact form in the right hand side of equation (9).

Using F and (_ defined in a similar method as the f, we can spatially discretize the Euler

equation (2) by setting A( = At/= 1 as •

0Q ~ _ ~

+ Fi+½j -Fi_x j_ +Gij+{ -- lfij_!: =So--i-

The indices i and j are for the _ and r] directions, respectively.

Time Advancing Scheme

The four-stage Runge-Kutta technique [8] is adopted for the explicit formulation in time.

To obtain new flow variables at t = (n + 1)At from known data at t = nat equation (2)
is used to advance the solution in time as follows :

QO) _ Qn = al AtW (°)

Q(2) _ Qn = a2 AtW (1)

Q(3) _ Qn = a3 Atw (2)

Q(4) _ Qn = c_4 Atw (a) + D

where W (k) denotes S - 0F/0_ - 0G/0r] evaluated at the k-th stage. The stage 0 and

4 are at the time, nat and (n + 1)At. The parameters, c_l,o_2,Ota, a4, are given to be
i 1 1 1 This time difference is second order accurate and the intermediate variables are
4 _ 3; 2 _ "

not stored at every stage.

A numerical dissipation term D is added during the fourth stage to enhance the numerical

stability. The dissipation term is introduced to be of sixth order so that our fourth order

accuracy remains intact.

D =w_j(06q 06q)gg+ 
where aJ¢ is a constant and 06q/0( 6 is given by :

06q

0_ 6
- 15(qi+lj + qi-lj) - 6(qi+2j + qi-2j) + (qi+aj + qi-3j) - 20qi./

The derivative 06q/0@ in the 77direction is obtained in the similar manner. This numerical

dissipation is applied to all internal points.
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Boundary Condition

The boundary treatment considered here is a combination of characteristic and algebraic

boundary conditions. The characteristic boundary condition solves the governing equation

in a characteristic form in each coodinate direction and the algebraic boundary condition

is the given boundary conditions such as temperature, total temperature, velocity, etc.

Equation (2) is written in a non-conservative form as:

0q 0q 0q = __ = __
_-+A_-_+B_=0 where A 0r0q and B 0G0q

For the _ direction, equation (2) with a transformation dq = Red_ becomes

04 Oel a_l
_- + R_ "IARc _--(+ R_'IBR_ _-_ = 0

If we construct the matrix R_ such that the eigenvectors of the matrix A constitute

itscolumns then the matrix by a similaritytransform becomes a diagonal matrix, whose

entriesaxe the eigenvalues of A such that

R_ -1AR_ = h e = diag(U, U, U + ae, U - ae)

where ae -- c ¢_ + _y2. Here, c is the speed of sound defined to be v_/M,-, and U =

_,u + _vv. In the saxne way, for the 7/direction the diagonal matrix becomes :

R_-IBRn = A n = diag(V,V,V + a_,V - a.)

where a n

in each coordinate direction to be:

Oq Oq R_ 1 OG
R71-=- + A_R:I _-z-. + - 0

J Orl

= c Crl_ + rl2, and V = rl.u+rlyv. The characteristic equations are then rewritten

( 1 0

Oq Oq R_ -1 OF _ 0
and R_I_ -+A.R_I_-_W + j 0_

v_c v_c

where :

p u

u p_y _(T + _*)

..£._ v
v -p_ v_(_ + _)

p(_,- ,_.) v + _0_,--1

* (7 - 1)._-

p U

-_(-_ - _:_)

@-_0

v -),--1

(7- 1)_ _2

--RVu+k*v
P P

- (I-_)_
___ +

+ _ v% ,.,%_

e ¢ -R (a-7)u
:_3+ _ _+_

0
P

.at.. (1--'7)v "7--1

(1--",/) v "/--1

"_2p + 2"--4"4"4"4"4"4"4"4_Vp_ v'_p*
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and _ _ , _u - _v_ , _ = _, T/

=kzu+kyv, __ 7-1 v2 p@ pc
2 ('_ + )' _= v_(7-1)c + v_(7-1)

Hedstrom [9] proposed that the non-reflecting boundary condition can be constructed by

setting any eigenvalue, which is the element of A, to be zero, if a wave is incoming towards

the computational domain. Thompson [10] further extends this method and Lele [5] used

the same boundary condition in the simulation of a free shear flow.

Application

In the present study Euler computations of plane shear flow are presented to validate

the numerical method developed. For this validation, computional results of spatially

developing flow are examined against linear theories, experimental data, and flow visual-

izations. The initial shear is given as the axial velocity distribution at z = 0, where x is

the downstream variable. Initial vorticity thickness of the shear 6Wo, which is defined as

(u}- u;)/(du*/dy*)m=z, is chosen as the reference length I*. Quantities with asterisks are
dimensional, subscripts f and s denote faster and slower speeds, respectively. The maxi-

mum derivative is taken at the inflection point at y = 0. Then, the initial shear profile is

given as :
Au*

u = t  _h(2y)+ 1, - 2u; (10)

where Au* = ul-u,, u,. = (ul+us)/2, and the reference velocity in this case is the average

speed of two streams. The momentum thickness, 8, which is used as a reference length scale

in both theoretical and experimental analysis, becomes 6Wo/4 for the shear given by (10).

All the flow computations is carried out by assuming that mixing of two streams occurs at

an uniform temperature. The other flow parameters chosen are: T[ = 298°K, l*= 0.00254

m, and p* = 1.1839 Kg/m s.

Figure 4 illustrates two grids used. Grid I (240 x 120) and Grid n (300 x 160) are stretched

in both y and x directions. In Grid I mesh size Ax varies between 0.4 and 1.568 with

0.15 < Ay _< 0.4 at the inlet and 0.333 < Ay < 0.864 at the exit plane. The inlet extends

between -12.43 _< y < 12.43 and the exit plane between -32.7 < y < 32.7, and x reaches

196.5. In Grid II mesh size Ax varies between 0.516 and 0.84. Inlet and exit have the same

height of -25.8 < y < +25.8 with Aymm = 0.12 and Ay,,_a_ = 0.576. The downstream

extends to x = 206.

Subsonic flows are simulated with and without external excitation on the initial shear.

Mach numbers of the two streams considered here are 0.6 and 0.3, in which u*=155.768

m/s, Mr = 0.45, andp* is 2.873 K Pa. At the inlet, u defined by (10), v = 0, T = 1

are given and one characteristic equation is solved for the outgoing acoustic wave. At the

exit, the characteristic equations axe solved for the three outgoing waves. For the other

9



incoming acoustic wave,the characteristic equation is alsoimposedwith its incoming wave
velocity set to zero. On the side boundaries,all the characteristic equations are computed
by setting the wave velocity to zero if the wave is incoming towards the computational

domain. The flow case with no excitation, which is naturally acquired flow, is simulated

first. A forcing is then given later on the v velocity at the inlet from the natural flow

solution to excite the flow.

Figures 5-(a,b,c) show the contour plots of Mach number, vorticity, and the static pressure

at an instant in time. A large vortical structure is clearly seen in the Mach number and the

vorticity contour plots as shown by Figures 5-(a) and (b). The static pressure contour plot

of Figure 5-(c) supports existence of this vortical structure by aligning its local mimima

with the centers of the vortices depicted in the Mach number and the vorticity contour

plots. This train of local pressure minima and maxima is the basis of analytic estimation of

the convective velocity at which the large vortical structure travels. The vorticity contour

plot is chosen hereafter as an appropriate visual device to examine the large flow structure.

The vorticity contour plots in Figures 6 through 9 show a spatial evolution of shear flow

with time. The convective velocity can be found from the time history of the vorticity

contours. The simulation using the Pade differencing with a = 0.3 and 0.35619 predicted

the convective velocity, uc, of 0.99. In the explicit computation uc has a value between 0.96

and 1.02. From the four cases shown in Figures 6 through 9, it can be concluded that the

convective velocity is about unity, which is the average velocity of the two streams. Brown

and Roshko [3] found that the large eddies travel at a constant velocity, which is the average

speed of the two streams, and this velocity is independent of size or location of the eddy.

Papamoschou and Roshko [11] derived the same result. This convective velocity is identical

with the computed value and the present results also confirm an earlier observation that

the convective velocity is independent of eddy location and size. The only exception is

that the convective velocity varies when two successive vortices merge into one, which is

often referred to as a vortex pairing. In this pairing process, the vortex which travels

behind picks up speed to catch up with another vortex proceeding ahead, then the two

slide on each other and coalesce. After the completion of vortex pairing the convective

velocity becomes constant again until another pairing occurs further downstream. This

vortex pairing process is illustrated in the vorticity contour plots. Figure 10 shows the

trajectories of vortices, which shows the birth, pairing, convecting, and further pairing of

vortices. Parallel slopes on the x - t diagram, which is the convective velocity, are clearly

seen to be constant regardless of the vortex location.

An unforced shear flow exhibits a distributed spectrum in its fluctuating quantity. Figure

11 shows this for the u velocity spectra at y = 0 and various downstream locations. A

peak in the spectrum is clearly seen in this unforced flow. The frequency for the peak in

the spectrum is referred to as the most preferred frequency. The Strouhal number, St.

is used as a dimensionless frequency and defined to be f*8/u* with f* the frequency in

Hz, 8 the initial momentum thickness. In the early flow development, the u spectrum

has its peak at St = 0.021. This persists to some location downstream, then eventually,

the lower frequency of St = 0.0086 becomes dominant far downstream. This agrees with

the general observation that lower frequency wave, whose wave length is longer, survives

10



further downstream than a higher frequency wave. Linear theories by Michalke [12], and
Monkewitz and Huerre [13] show that the most amplified frequency is about St = 0.033.

In jet flow, Freymuth [2] found the growth rate observed experimentally agrees very well

with the theory for St up to about 0.024, and remains constant for St > 0.024. This value

is very close to the computed St of 0.021. In light of those results, it appears that the most

preferred frequency, which is acquired naturally, has a lower value than the most amplified

frequency predicted by linear theory.

It is known from linear theory that a free shear flow is unstable under presence of a dis-

turbance. The disturbance introduced grows exponentially either in space or in time. The

initial shear layer undergoes wave propagation in the presence of a background disturbance,

which is due to the truncation error caused by a discretization of the flow equations. Trav-

eling instability waves get intensified to a certain level of magnitude. In Figures 6-9, the

shear layer appears wavy, yet it is well connected up to x of 60 to 80 depending upon

time. The shear layer, then, rolls up into a discrete vortex and convects downstream. In

the early flow development stage before the vortex roll-up, there is a region where linear

theory is valid. This linear region can be verified by checking for exponential growth in the

magnitude of fluctuating u velocity. The root-meam-square of fluctuation of u, denoted

by 'Urms, is used as a measure of the magnitude. Figures 12-(a),(b), and (c) show the

region in which a logarithmic scale of u_ras grows linearly for various y locations. Sharp

increase near x -" 0 should be neglected since the boundary condition imposed at the inlet

influences the flow solution in this region. It appears that the slope varies also with y and

the maximum slope is shown on the slower fluid side. A growth rate s is defined to be

d(ln U_rrns)/dx. Then, values of s for the unforced shear flow shown in Figure 12-(a) are

0.096, 0.102, 0.106, 0.105, 0.1, 0.099, and 0.096 at y---4, -3, -2, -1, -0.06, 1, 2, respectively.

Figure 12-(b) presents curves for when forcing is applied at its most preferred upstream fre-

quency at St of 0.021. Values of the slope are the same as those for unforced flow, because

natural shear flow is already dominated by the wave of that frequency. However, the linear

region near the inflection point becomes hardly discernable. This can be an indication that

nonlinearity takes place earlier than the unforced case. With lower frequency forcing, s

has smaller values of 0.087, 0.096, 0.098 at y--3, -2, -1, respectively. It is difficult to find

the constant value of s near the inflecton point and in the faster fluid territory. It can be

interpreted that the two waves, one of forcing frequency and the other of upstream most

preferred frequency, interact nonlinearly. However, it appears in common that Urms_ grows

up to a certain magnitude, and then levels off. The Urms_ varies in a mildly oscillatory

manner further downstream, which is not shown in the figure. In Figure 12-(a) and (c),

U_ns becomes magnified up to about 10 %, and 13 % in Figure 12-(b).

The Urms_ discussed above is not for a single frequency, but for all the frequency content. To

observe the growth behavior of individual waves a Fourier decomposition is needed. This

has been done for the u velocity at y -- 0 at various downstream distances. The growth

rates s computed are 0.065, 0.108, 0.12 for St=0.0086, 0.021, 0.028, respectively. The

exponential growth of the low frequency wave at St=0.0086 is observed about 65 < x < 75,

which is sufficient downstream where the vortex roll-up can occur. Linear wave behavior

is found in the region of x <_ 36 and x <__25 for St of 0.021 and 0.028, respectively. Low
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frequency expansiongiven by Monkewitz and Huerre [13] yields the growth rate s(St) at
1

As of _ to be 0.578, 0.111, 0.122, in the same order as above.

The profile of u_vas is illustrated in Figure 13. In the early development region kinks

appear on both sides of the peak near the center. The kink on the slower side of fluid

is very sharp. This phenomenon has been reported in both the experimental literature

[2,4,15] and the theoretical literature [12]. Figure 13-(a) is for the unforced flow. The

U_-ms profile first develops into double humps, then evolves into a single peak further

downstream. Figure 13-(b) also shows the same type of kink in the initial development,

but quite a different shape forms downstream. With excitation at the preferred frequency

a deep valley appears in the center area. This is similar to the phenomenon Browand

[15] found when the shear flow is excited at near the most preferred frequency. As flow

proceeds further downstream the profile evolves to a single peak as in the previous case.

As shown in Figure 13-(c), U_:ms under a lower frequency forcing, which is away from the

most preferred upstream frequency, takes on a character similar to the unforced flow. No

deep valley is seen in the middle of the flow evolution.

Forcing is introduced to the initial shear to see the more organized flow structure. The

transverse velocity v is given an oscillation of eg(y) sinwt, where g is a Gaussian distribu-

tion. For a subsonic mixing of two streams of M=0.6 and 0.3 e is given to be 0.01, and the

forcing is given at the most preferred frequency of St=O.021. The angular frequency w is

2,_ which is 5.2 K Hz for the flow condition given. Figure 14 is the vorticity contours
11.785 '

at consecutive time periods 192 p seconds apart. As shown in Figures 6-9, vortices do not

appear to be periodic in the unforced flow, the spacing between two consecutive vortices

is irregular, and vortex roll-up and merging of two or even three vortices occurs randomly.

However, in the presence of forcing, the initial vortex pairing process is suppressed, with

the process resumed at some downstream location. Vortices are orderly, keeping the same

distance apart. This is similar to the situation that Ho and Huang [14] observed. As

shown in Figure 14, forcing generates a very organized flow structure. This figure also

shows that the first five vortices appear frozen, in other words the flow up to about five

vortices downstream is stationary. That is the precise counterpart of the flow visualization

made in the laboratory using conditional sampling technique, which can be obtained by

synchronizing the strobe speed with the forcing frequency. Vortex pairing occurs down-

stream, consequently, the flow appears to be unsteady in shedding vortices. This vorticity

contour also gives the convective velocity to be 0.99, which is the same value found for the

unexcited case.

A forced supersonic free shear flow is also computed with M=1.6 and 1.2. All of the velocity,

temperature, and density are given at the inlet. All of the characteristic equations are

imposed at the exit as the boundary conditions. Unlike subsonic flow, it is very difficult (at

least in the present computation) to simulate the supersonic shear flow without excitation.

This indicates that the nature of free shear flow generated by two supersonic streams is

far more stable than the subsonic flow. External excitation of e = 0.05 is imposed on the v

velocity at the inlet in a similar manner as used in subsonic flow. The forcing frequency w is

taken arbitrarily to be 2_..______Figure 15 shows the flow structure at every two time periods,12.29"
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which is at 128.9 p seconds apart. The supersonic computation has been performed on

Grid I. It is interesting to observe that no vortex pairing occurs. Many experiments have

revealed that the free shear of two supersonic streams exhibits poor mixing characteristics,

which is an indication of a very stable flow situation. All of the vorticity contour appears

identical because conditional sampling is made on the flow field which is free of vortex

paring processes. Again, the convective velocity computed from Figure 15 is 0.99. This

value is in agreement with Papamoschou and Roshko [11]. From these observation of the

excited shear flows it can be concluded that the forcing has no influence on the convective

velocity.

Future Direction Towards Aeroacoustics

The fourth order numerical schemes developed in this work present flow solutions which

exhibit important flow phenomena and agrees very well with published experiment and

theory. As mentioned briefly in the introduction the flow field so simulated will be used

as a source of the sound. There are two main ways to predict far-field noise from the

numerical flow solution. The first approach is the acoustic analogy by Lighthill [1]. In this

method, a numerical solution of the wave equation for a far-field is not required since the

integral form of the exact solution is used, which is called the retarded potential solution.

The computed flow solution is fed into the integrand and is to be integrated over the

entire flow domain. Since the integrand is evaluated at different retarded times, a time

interpolation is needed. Therefore, flow solutions must stored at several time steps over

the entire flow regime.

A second way is to solve the wave equation directly, which can be done parallel to the flow

field computation. A flow boundary is imposed sufficiently far from the center of the free

shear layer, so that acoustic assumption is deemed plausible there. The wave equation

is solved from a surface near the flow boundary with the pressure or density distribution

given on it. The mesh in the wave equation computation is much larger than that used

in the flow computation and becomes stretched greatly. The schematic is drawn in Figure

16. An accurate wave equation solver is an essential tool for this purpose. A higher order

DRP scheme seems to be a good choice to solve the wave equation.

It is acknowledged that Dr S.T. Yu's work was a benefit to the present development of

numerical methods.
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